From BPEL4WS Process Model to Full OWL-S Ontology

Muhammad Ahtisham Aslam, S6ren Auer and Martin >

University Of Leipzig

Leipzig, Germany
ahtisham_a@hotmail.com
{auer,boettcher}@informatik.uni-leipzig.de
Jun Shen {jun.shen@cs.unisa.edu.au}
School of Computer and Information Sciences, Umsigof South Australia

Adelaide, Australia

Abgtract. BPEL4WS is one of the most well known Businesscess
development languages. It can be used to develgcutable Business
Processes as a combination of Web Services interdot a specific sequence
called process flow. But still BPELAWS does notspré meaning of a business
process so that business processes can be autorimated computer
understandable way. On the other hand OWL-S (OWlsédovices) is designed
to represent such kind of semantic information. r€éhexists an overlap in the
conceptual model of OWL-S and BPEL4WS that can d&uo overcome this
lack of semantics in BEPLAWS by mapping BPELAWSOW/L-S. In this
paper we are presenting a mapping strategy andtetype tool implementing
this strategy to map BPEL processes to OWL-S ogyokService, Profile,
Process Model and Grounding) to overcome the sdendinmtitation of
BPEL4WS.

1 Introduction

Web Services [1], the Business Process Executiomguage for Web Service (BPELAWS) [2] shortly
known as BPEL and now the OWL-based Web Serviceology (OWL-S) [3] are result of efforts to
achieve efficient and reliable communication indhewing e-business world.

Web Services, as an effort in this direction weegedbped to achieve efficient, dynamic and platform
independent interaction between business partBersness partners can develop business applica®ns
business services (WSDL services) [4] and publisimtin a UDDI (Universal Description, Discovendan
Integration) server [10]. Interested parties camd fand use these services in a loosely coupled way
regardless of their location on the network. Buerexhen Web Services do not provide much semantic
information so that they can be discovered andanted in a computer understandable way. Publishing
and discovering a required Web Service involvestaol human involvement. Bringing the semantics to
Web Services technology aims at replacing theseahuimvolvements with computer understanding by
making the use of ontologies.

Different workflow languages specially Business dess Execution Language for Web Services
(BPEL4AWS) uses Web Services in a more meaningfylwacombining Web Services functionality in a
specific sequence to perform some specific busitesss BPELAWS defines a model and a grammar for
describing the behavior of a business process basddteractions between the process and its partne
[14]. BPEL has good process modeling capabilitiesléck of semantic information in a BPEL processes
left the aim of process automation on the road nBhieugh BPEL has good process modeling capabilitie
even then semantic limitations of BPEL are a bigllauin business process automation.

OWL-S as a parallel effort in this regard is amaation for Semantic Web and process modeling
community. OWL-S aims to make Web Services compaterpretable, described with sufficient
information to enable automation of variety of taskcluding Web Service discovery, invocation, and
composition [17]. Since both OWL-S and BPEL havecess modeling capabilities therefore mapping of a
BPEL process to an OWL-S ontology will result ineusf process modeling capabilities and semantic
capabilities of OWL-S. This semantically enrichedormation about service capabilities (annotateth wi
ontological concepts) will help in achieving thenadf business process automation.

In this paper we present a mapping strategy to BRBEL processes to OWL-S ontology and our
prototype mapping tool implementing this mappingatsgy. Our BPEL to OWL-S mapping tool is an
extension to BPELAWS2OWL-S tool, by “CICEC Lab” [9 achieve real and more consistent mapping.
The tool by “CICEC Lab” provides a very initial kirof mapping. For example it parses the WSDL files
and in mapped OWL file it writes the WSDL operatias an Atomic Process with its inputs and outputs
without Profile, Process Model and Grounding of theomic Process. We can say that mapping takes no
care for OWL-S specifications. Work by CICEC Laluf Shen and Yun Yang) has following major
drawbacks:

. Atomic Processes are not supported according to @Whecifications.

. Complex message types are not supported.

. No data binding is supported between Atomic Praess

. Atomic Processes have no “Profile”, “Process Modeld “Grounding”.

. Atomic Processes can not be invoked and executegitting OWL-S service.
. Resulting OWL-S service has no “Profile” and “Grding”.

. Mapping does not support the OWL-S specification.

Therefore unavailability of service profile thainche used to present semantically enriched infoomat
about service capabilities keeps the mapping aveay fts goal. Also unavailability of service groumg
results in communication restrictions with corrasgiog partner services. Unavailability of suppast f
complex message types keep mapping away from mgedtita flow. We can summarize the work by Jun
Shen and Yun Yang by saying that the tool parse8PEL file and tells about the activities flow amep
it to their relevant OWL-S control constructs. WSHles are parsed and each operation is presested a
Atomic Process (without OWL-S supported specifaras).

Our work is an effort to achieve more consistenppiag resulting in full OWL-S suite of ontologies.
Our work supports complex message types, WSDL tipesaare mapped to OWL-S Atomic Processes
(with Profile, Process Model and Grounding), ddtavfbetween Atomic Processes is supported and the
mapped OWL file has the complete OWL-S suit of togy (Profile, Process Model and Grounding). Also
Atomic Processes are grounded with real WSDL sesviap that they can be invoked and executed on
network.

The remaining paper is organized as follows: Intieec2 we discuss some important concepts,
concerning the relevant technologies i.e. BPEL, G8Vand some introductory sentences about the OWL-
S API being an important part of mapping implemémita In section 3 we discuss the mapping strategy.
Section 4 describes creation of OWL-S suite of logies. Section 5 describes the mapping tool. dticee
6 we discuss the related work and future planegid®e7 draws the conclusion of our work.

2 Background
21 BPEL4WS

From early days of efforts for Web Services ainthef community is to develop a technology with which
business partners can communicate with each athglatform independent and computer understandable
way without human interaction. The Web Services roomity in this regard was successful in developing
a language “Web Services Description Language” (WS[4] with which business partners can
communicate in platform independent way. But sfilbrts for seamless communication between partners
are on the way.

Different workflow languages e.g. WSFL [11], MS XN& [12] and BPELAWS [2] were developed to
bring the use of Web Services to a higher levelytath they can be used in a more meaningful way to
perform some specific task. Among these languageELBgot more attraction of the community for
modeling business processes as a composition ofersires.

Figure 1 gives an overview of BPEL activities. Figul shows that BPEL presents two kind of
activities to be used for process modeling Basic or Primitive Activities and Structured Activities
Primitive activities e.g. “Invoke”, “Receive” “Repl are used to model interaction between business
partners, where as workflow in a BPEL process mdégehodeled by using the Control Constructs e.g.
“IfThenElse”, “While Loop” etc. These activities mde nested in some structured activities accortting

requirements e.g. “Sequence” activity can be usegketform sub activities in a sequence. “Flow" \ati
can be used to perform sub-activities concurreanly to synchronize sub-activities. Key componefts o
BPEL process model are partners that associate ba seevice defined in an accompanying WSDL
document with a particular role and variables. &aleés contain the messages passed between paraers
correspond to message in accompanying WSDL docsnight Butt effective dynamic service binding
cannot be performed by solely matching WSDL messpiiterfaces.

BPEL 4WS Activities
Basic OR Structured
Primitive Activities
Activities
+ Receive - Sequence
.« Send « Flow
. Invoke . Switch

. While
etc.

Fig.1. BPEL4AWS activities table.

Although BPEL has many advantages, it also has dionitations. Because expressiveness of WSDL
service behavior is restricted to interaction dmtions and BPEL uses WSDL portType as service
information, therefore BPEL inherits the limitatiorof WSDL. Furthermore, BPEL cannot express the
inheritance and relationships among the web sesvitte cannot provide well-defined semantics for
automated composition and execution. Moreover ethesguages are based on XML in essence, they are
limited in semantic descriptions without enoughotody support [6].

22 OWL-S

Towards ultimate goal of seamless interaction ampatyvorked programs and devices, industry has
developed orchestration and process modeling lggguauch as WSFL [11], MS XLANG [12] and
recently BPELAWS [2]. Unfortunately, lack of suppdor semantically enriched information in these
modeling languages leaves us a long way from seaniéeroperation. Researchers in the Semantic Web
community have taken up this challenge proposipedtmwn approaches to achieve aspects of Web Service
interoperation [5]. Different Semantic Web and SeticaWeb Services technologies for example RDF,
DAML, OWL, and now the OWL-S ontology are resultedforts in this direction.

Ontology is a set of concepts, their properties] sationship between them. Ontologies provide the
building blocks for expressing semantics in a wefined manner [7]. Where as OWL-S provides an
ontology developed for web services and consistettypes of knowledgeérofile, Process Modehnd
Grounding[3].

“Service Profile” provides semantically enrichedormation about the capabilities of a service and
what a service is doing. “Service Profile” spedifieputsrequired by a service amitputsgenerated by a
service, pre-conditions that need to be true fangushe service and effects that service will praelin
surrounding world after its execution.

Rather than a program that can be executed, a éBsadodel” is specification of ways a client may
interact with a service. A “Process Model” can hawve or more “Simple”, “Atomic” and “Composite
Processes”. An “Atomic Process” is a descriptionaofervice that can be executed in single step and
expects a message as an input and may returnssageesa response as an output. A “Composite Prbocess
maintains the state of the process. A “Compositecéss” may consist of sub Composite or Atomic
Processes. “Simple Processes” are non-invokealnleegses and have no grounding, but like Atomic
Processes they can be executed in single step.

“Grounding” specifies how to access a service. Maah details, for example, communication
protocols, message formats, port numbers used mtactothe service, are specified in “Grounding”.
Normally the “Grounding” suffices to express hove tbomponents of a message are bundled, i.e. how
inputs are put together to make a message to &seand how replies are disassembled into thadiee
outputs [3].

23 OWL-SAPI

OWL-S API provides with java APIs for programmaticcess to read, execute and write OWL-S service
descriptions. The API provides an Execution Engdfia¢ can invoke Atomic Processes that have WSDL [4]
or “Universal Plug and Play Language” (UPnP) [18Jundings, and Composite Processes that uses OWL-
S Control Constructs e.g. Sequence, Split etc (BVL-S’s exchange syntax is RDF/XML and many
processors work with an RDF based model, in parfadilitate the smooth integration of OWL-S seevic
descriptions with other Semantic Web knowledge ©iasewever working with the RDF triples directly
can be quite cumbersome and confusing and the O\AP{Snas designed to help programmers to access
and manipulate OWL-S service descriptions prograticaily [8]. We have also implemented the use of
OWL- S API in our tool to write the OWL-S ontolodgr the BPEL process model, according to mapping
specifications discussed in the next section.

3 Mapping Specification

In this section we shall discuss the mapping frdREB process to OWL-S ontology. We shall also discus
the mapping criteria used for mapping in areas wispecifications does not support direct mappiog, f
example the “assignment” activity in BPEL has naieglent Control Construct in OWL-S etc.

3.1 Overview

Figure 2 gives an overview of mapping specificatiofigure 2 shows that BPEL primitive activitieg ar
mapped to OWL-S “Perform” statement to perform thkevant Atomic Processes. Also if a primitive
activity is an /O activity (communicating with thaeuter world) then this activity is used to cretite
“Profile” of the resulting OWL-S service. Also thfigure 2 shows that BPEL structured activities are
mapped to relevant OWL-S control constructs. Onbtis of this mapping overview the next sectiolh wi
discuss the mapping in more detail.

OWL-S
I/O Primitive
Activity Profile
BPEL4WS =12
Primitive Activities _ ¢)
/ Atomic Process (Perform)
: B <process:Perform>
¢ Receive l <process:process
. Send = = tesssssspassssessssssesses 1 df-resource="............. ">
. Invoke </process:Perform>
Structured Activities Control Constructs
. Sequence -------------------------- R h— . Sequence
o« Flow = = ‘===eeeespressssssseessnnn R — . Spllt
. Switch (Case) W — Sequence (|ﬂ'henE|Se
. While ~ = ==sseeespeessssssasnnn R — . RepeatWhiIe

Fig.2. Overview of mapping specificaon

3.2 Atomic and Composite Processes

Beyond the BPEL specifications the OWL-S providegeé kinds of processes, “Simple Processes”,
“Atomic Process” and “Composite Process”. WhereBREL has two kind of processes i.e. “Abstract
Processes” and “Executable Processes”. “Abstramtedses” provide means of synchronization withrothe
processes at various level of granularity for theppse of planning and reasoning [6]. “Simple Psses”

in OWL-S also play the same role as BPEL “AbstRcicesses” by providing a level of abstractionc&in
to keep the complexity of work within limitationis, the current version synchronization between gsses

is not supported therefore we restrict ourself loa tapping of “Executable Processes” to “Atomic and
Composite Processes”.

Proces: I—————_I
Mapping

P Atomic
Processes | |-

I
I
|
——— |
I

I

Composite
Processes | |-

Mapping == =— — — — —
OWL-S
Fig.3. Process mapping between BPELAWSQANE -S processes.

3.2.1 Atomic Processes

“Atomic Process” corresponds to an action a sergée perform in a single interaction and which ban
executed in a single step (by sending and rece@pmyopriate messages). Also Atomic Processesiave
sub-process.

BPEL process gives flow information of differentieities in a business process. Where as messages
exchanged between partners, port types and palitiey, expressing business partners and relation
between partners are expressed in BPEL corresppni8DL file. A business process interacts with
partner services through interfaces supported bsesponding web services. “Operations” supported by
partner services (WSDL services) can be used tforpersome specific task by sending them an input
message and probably receiving some output meski&gean operation supported by a web service, an
“Atomic Process” in OWL-S is a process that carfqgyer some action in a single step. Therefore partne
web services (WSDL Services) are parsed and cameipg Atomic Processes (with Profile, Process
Model and Grounding) are created for each suppasfeetration.Grounding of each Atomic Process
specifies the real Web Service (WSDL service), st it can be invoked in OWL-S service to perform
some specific task.

For more clarification consider the “TranslationA¥idtionary” process example (available with our
tool). The example contains a BPEL file and relévaSDL file and two WSDL services
(“DictionaryService.wsdl” and “TranslatorServicedl’s providing functions “getMeaning” and
“getTranslation” respectively). The figure belowosls the partner link for the interacting web sesvic
the BPEL's corresponding WSDL file.

<pInk:partnerLinkType name="Dictionary_Ser_PortTy pe">
<pInk:role name="portRole">
<pInk:portType name="q1:DictionaryPortType" / >
</plnk:role>

</plnk:partnerLinkType>

Fig.4. “Partner Link” in BPEL corresponding WSDLUdishowing interaction with “Dictionary Service”.

Figure below (fig. 5) shows supported operatiortfMganing” in the “DictionaryService.wsdl” file.

<wsdl:portType name="DictionaryPortType">
<wsdl:operation name="getMeaning">
<wsdl:input message="tns:DictionaryRequest" / >
<wsdl:output message="tns:DictionaryResponse" />
</wsdl:operation>
</wsdl:portType>

Fig.5. WSDL operation "getMeaning” to be mappedd@WL-S Atomic Process “getMeaningProcess”.

So according to specifications, the tool createsnid¢ Process “getMeaningProcess” for operation
“getMeaning”. Similarly all partner services (WSDBkrvices) are explored and Atomic Processes “OWL
files” are created for each supported operationthed these “OWL files” can be used as “Atomic
Processes” to perform some specific task (being tiawe real grounding to be invoked). Also, tooll wi
not be able to create the Atomic Process, if théWService would not be accessible on network.

3.2.2 Primitive Activitiesand Atomic Processes

As a logical equivalent of the OWL-S “Perform” statent used to perform an “Atomic Process”, “BPEL”
has “Primitive Activities” e.g. “Receive”, “Invokeand “Reply’ activities used to perform some specif
operation by sending and receiving appropriate aggEss “Receive” activity is used to receive some
message from some resource e.g. from some welceeteply” activity is used to send a message in
response to some “Receive” activity. Where as thedke” activity represents combine behavior ofthot
“Receive” and “Reply” activities i.e. it invoke @rmwice by sending it an input message and therveeee
message as an output of web service operationrd-igushows “Invoke” activity statement in a BPEL
process.

<invoke partnerLink="Dictionary_Ser_Port" portType= "g3:DictionaryPortType " operation=
getMeaning" inputVariable= "Message_1_To_Dic_Serv ice”
outputVariable= "Message_1_From_Dic_Service"/>

Fig.6. “Invoke” activity sending and receiving mag® from“Dictionary Service”.

In above statement “Invoke” activity is sending iaput message “Message_1 To_Dic_Service” to
perform operation “getMeaning” and receiving a rages"Message_1_From_Dic_Service" as a response
of “getMeaning” operation. Like OWL-S “Atomic Progges”, BPEL primitive activities can be used to
perform some specific operation in a single stegh #rey have no sub activity to be performed. We can
map these BPEL primitive activities to OWL-S “Perfd statement to perform the relevant “Atomic
Process”. The above primitive activity (Invoke)tstaent can be mapped to OWL-S “Perform” statement
to perform the OWL-S Atomic Process “getMeaning@sst (as shown in figure 7).

<process:Perform>
<process:process rdf:resource="http://examples.org /DummyURI.owl#getMeaningProcess"/>
</process:Perform>

Fig.7. OWL-S “perform” statement to perform AtorRimcess “getMeaningProcess”.

Where as the “getMeaningProcess” is Atomic Prodkas can be performed in single step and is
supported by the “getMeaning.owl” file created éction 3.2.1.

3.2.3 Structured Activitiesand Composite Processes

“Structured Activities” in BPEL describe the orderwhich set of child primitive or structured adties
will be performed e.g. “Sequence” structured attidescribes that the child primitive or structured
activities within a “Sequence” activity will be germed in a sequence. Similar to BPEL structurdiViac
“Sequence”, the OWL-S has “Sequence” control costthat is used to perform the child Atomic or
Composite Processes in a sequence. Due to thaalogatching behavior, BPEL structured activites
mapped to OWL-S control constructs with in an OWG@&nposite Process.

Against an “Atomic Process”, a “Composite Procéssiot a behavior a service will do, but a behavior
(or set of behaviors) the client can perform bydssm and receiving a series of messages [3]. A
“Composite Process” may consist of sub Atomic omPosite Processes. Like BPEL structured activities
the OWL-S Composite Process defines how sub AtdPmmcesses or Composite Processes within a
Composite Process are performed by using the OWan8ol constructs.

Let us consider the code below (taken from “Traisi@ndDictionary” example available wit tool),
describing that structured activity “Sequence” has sub primitive activities that can be performed
sequence in a BPEL process.

<seguence>

<invoke partnerLink="To_Translation_Service_Po rt_1" portType=
"g2:TranslatorPortType” operation="getTranslation” inputVariable=
"Messagel_To_Translation_Service" outputVariable="M essagel From_Translation_Service"/>
" Zinvoke partnerLink="Dictionary_Ser_Port" portT ype="q3:DictionaryPortType"
operation="getMeaning" inputVariable="Message_1__ To_Dic_Service”

outputVariable="Message_1_From_Dic_Service" />

</sequence>

Fig.8. “Sequence” activity having child primitivectivities (Invoke).

Figure 9 shows the mapping of BPEL structured igti&equence” to the OWL-S control construct
“Sequence” which perform two Atomic Processes “gatiflationProcess” and “getMeaningProcess” in a
sequence. Where two “perform” statements are refuitapping of two “Invoke” activities with in BPEL
“Sequence” activity (as discussed in section 3.2.2)

<process:composedOf>
<process:Sequence>
<process:components>
<process:ControlConstructList>
<list:first>
<process:Perform>
<process:process
rdf:resource="http://examples.org/DummyURI.owl#getT ranslationProcess"/>
</process:Perform>
<process:ControlConstructList>
<list:first>
<process:Perform>
<process:process
rdf:resource="http://examples.org/DummyURI.owl#getM eaningProcess"/>
</process:Perform>
</list:first>

</process:ControlConstructList>
</list:rest>
</process:ControlConstructList>
</process:components>
</process:Sequence>
</process:composedOf>

Fig.9. OWL-S “Sequence” Control Construct perforgitwvo Atomic Processes in a sequence.

“Flow” activity in BPEL is used to create concuregrand synchronization between sub-activities and
has an equivalent OWL-S control construct “Spliti. OWL-S, “Split” control construct is used for
concurrent execution of process components andtI8jpi’ control construct is used to define proesss
that have partial synchronization. But in curreetsion we have implemented the mapping of “Flow”
activity to “Split” control construct and synchraation between process components is not yet stggpor
Consider the following example (Demo example) c@iitpire 10) showing the BPEL “Flow” activity
having “Sequence” and “While” sub-activities.

<flow name="Main_Flow">
<sequence name="CREATION_SEQUENCE">

<iwhile>
<isequence>
</flow>

Fig.10. BPEL “Flow” activity having sub “Sequencelnd “While” activities.

Mapping of BPEL “Flow” activity to OWL-S control estruct “Split” is shown in figure 11. Where
“Repeat-While” is OWL-S equivalent control constrdor BPEL “While” activity (as discussed later in
this paper).

<process:composedOf>
<process:Split>
<process:components>
<process:ControlConstructBag>
<list:first>
<process:Sequence>
<process:components>
<process:ControlConstructList>
<list:first>
<process:Repeat-While>
<process:whileProcess>
</list:first>
</process:ControlConstructBag>
</list:rest>
</process:ControlConstructBag>
</process:components>
</process:Split>
</process:composedOf>

Fig.11. BPEL “Flow” activity mapped to OWL-S “Sglit

“Switch” structured activity supports conditionathmavior, supporting conditional branches defined by
the “Case” element and having optional “otherwibeanch. The BPEL “Switch” activity is mapped to
OWL-S sequence “Sequence” of “IfThenElse” contohstructs. Where each “Case” is mapped to an
“IfThenElse” control construct and “Otherwise” pat “Case” statement is mapped to “Else” part of
“IfThenElse” control construct. The figure belowig(fre 12) shows BPEL “Switch” activity having a
“Case” element and “Case” condition statement.

<switch name="Solvency_Switch">
<case condition="bpws:getVariableData('status', 's tatus', '/ltype")=3">
<sequence name="Solvency_Sequence">
</sequence>
</case>
</switch>

Fig.12. BPEL “Switch” activity statement.

Figure 13 shows the mapping of BPEL “Switch” adjitdo OWL-S sequence of “IfThenElse” control
constructs.

<process:Sequence>
<process:components>
<process:ControlConstructList>
<list:first>
<process:If-Then-Else>
<process:then>
<process:Sequence>

</process:Sequence>
</process:then>
</process:If-Then-Else>
</list:first>
</process:ControlConstructList>
</process:components>
</process:Sequence>

Fig.13. Mapping of “Switch” activity to OWL-S sequee of “IfThenElse” Control Constructs.

Also, “While” activity in BPEL is mapped to “Rep#f@hile” control construct in OWL-S, to repeatedly
perform a specific process. Let us see the exacgde below (figure 14) showing the BPEL “While”
activity with “While” condition and having sub adity “Sequence”.

<while name="CREATION_WHILE" condition="bpws:getVar iableData('status’,
status','//type")=-1 or bpws:getVariableData('stat us', 'status’, '/ltype")=-2"
xmIns:demo="urn:demo:MarketplaceService xmins:svc=" http://bpeldemo.ibm.com/services/">

<sequence name="While_Sequence">
) </sequence>
</while>

Fig.14. BPEL “While” activity with “While Conditiohand having “Sequence” activity as sub-activity.

Figure 15 shows the mapping of BPEL “While” actimih OWL-S “Repeat-While” control construct.

<process:Repeat-While>
<process:whileProcess>
<process:Sequence>
<process:components>
</process:components>
</process:Sequence>
</process:whileProcess>
</process:Repeat-While>

Fig.15. BPEL “While” activity mapped to OWL-S “Regt@Vhile” Control Construct.

Conditions: Since, expressions in OWL-S “IfThenElse” “Conditicare not supported. Also there
exist no appropriate way to map the statement “pamvs:getVariableData(... ” to OWL-S, that's why in
this version automatic mapping of “Condition” is tnfully supported. But information about the
“Condition” statement can be found in “OWL-S Prac&ntology” e.g. “Demo.owl” (in case of our Demo
example project). This condition statement can beduto manually create the “Condition” i.e. SWRL
expressions for conditions in OWL-S

3.3 DataFlow

Data flow is an important part of the OWL-S spesifions. OWL-S specifications deal with the daavfl
at two levels, at one level of data flow we deahwiassing data from one Atomic Process to anotkter.
second level we define the inputs and outputs ohftmsite Process by specifying the input of a sub-
process as an input of the Composite Process asaibpospecifying the output of Composite Process a
an output derived from some sub-process.

According to BPEL and OWL-S specifications there ao logically equivalent activities in BPEL and
OWL-S for mapping and defining the data flow. THere, here we shall discuss the criteria we have
implemented for defining data flow between Atormic & omposite Processes.

<invoke partnerLink="To_Translation_Service_Port_1" portType= “g2:TranslatorPortType
" operation="getTranslation" inputVariable="Messag el_To_Translation_Service"
outputVariable="Messagel_From_Translation_Service" />
<assign>
<copy>
<from variable="Messagel_To_Translation_Servic e" part="getTranslationResult"/>
<to variable="Message_1_To_Dic_Service" part=" inputString" />
</copy>
</assign>
<invoke partnerLink="Dictionary_Ser_Port" portType= "g3:DictionaryPortType"
operation="getMeaning" inputVariable="Message_1_To _Dic_Service"
outputVariable="Message_1_From_Dic_Service" />

Fig.16. BPEL “Assignment” activity assigning thelwa between two message parts.

Logical behavior of BPEL “Assignment” activity shewhat it can be used between two primitive
activities to assign an output message or message (in case of complex message types) of fitstine
as an input message or message part for nexttachigure 16 shows an example of BPEL “Assignment”
activity statement (taken from “TranslationAndDactary”). According to mapping specifications,
“Invoke” activities before and after “Assignmentttizity are mapped to OWL-S “Perform” statement to
perform Atomic Process “getTranslationProcess” getMeaningProcess” respectively (as discussed in
section 3.2.2). “Assighment” activity between thdase® “Invoke” activities is assigning the value of
message part "getTranslationResult" of the messagable "Messagel From_Translation_Service" to
message part “inputString” of message variable 9dge_1_To_Dic_Service". Therefore while treating
the “Assignment” activity, message part in the baf>" part of “Assignment” activity is searched in
output parameters of relevant Atomic Process igetTranslationProcess” Atomic Process (where
“getTranslationProcess” is supported by “getTraimiecowl” file created in section 3.2.1). Similarly
message part in the “<to>" part of assignment #gti¢ searched in the list of input parameters for
“getMeaningProcess” Atomic Process. If both of ¢hasessage parts are found as input and output of
relevant Atomic Processes then data flow is cre@tetiveen these Atomic Processes, describing the
binding between specified variables (message paiglire 17 gives a simplified view of criteria dst®
create the data flow between two atomic processes.

Primitive Activity

a to a
M 1 ' et TrandationProcess
essage getTrandatio Atomic Process > g
Messagel.Pe _
¢ getTranslationProcess.out Data Flow
Message2.Pa getMeani*gProcess.in;
Primitive Activity .
Message getM eaning to getM eaningPr ocess
Atomic Procesg

BPEL4WS p OWL-S
Fig.17. Showing use of BPEL “Assign” activity teeate data flow in OWL-S.

Now “Data Flow” for Composite Processes: A BPELqass can have multiple interfaces, available as
“Receive”, “Reply” or “Invoke” activities, suppoideby port type, operation and input or output mgssa
defined in the BPEL corresponding WSDL file. Suctivéties can be used to receive and send a message
as an input and output of a BPEL process. Thereforeng these multiple input and output optionsuinp
of the first “Receive” primitive activity receiving message from the outer world is defined as ifgguhe
OWL-S Composite Process. If a “Receive” activitysheorresponding “Reply’ activity then message
variable of this “Reply” activity is used to seetlbutput of the OWL-S Composite Process. In othsec
first primitive activity e.g. any “Invoke” activitgending some message to the outer world is takema
output activity to define the output of the OWL-®rfposite Process. Also a primitive activity is deetl
as an Input/Output activity if the BPEL correspargdWSDL file supports its port type and operatibat
example the “Receive” activity statement shown Wwe{taken from “TranslationAndDictionary’ example)
is used to create input of the OWL-S Composite &s8c

<receive partnerLink="Input_Port" portType="ql:In put_PortType"
operation="Operation_1" variable="Input_Message" cr eatelnstance="yes" />

Since this receive activity don’'t has correspondiRgply’ activity (in case of our example), and BPE
process is sending its output to the outer world using the “Invoke” activity, having message
"Message_2_From_Translation_Ser" as output messageefore this activity is used to create outgut o

the OWL-S Composite Process.

<invoke partnerLink="Output_Port" portType="q1:0Ou tput_PortType"
operation="Operation_1" inputVariable="Message_2_Fr om_Translation_Ser" />

Off course in case of a complex message, messatgegpa considered to create the input and output o

the OWL-S Composite Process and are used to ctkatgrofile of the resuling OWL-S Service
(discussed in next section).

4 OWL-S Suite Of Ontologies
This section explains the creation of the OWL-Sesof ontologies. Figure 18 gives a simplified vieiv

mapping process. Figure 18 shows that BPEL4AWS2OWieBmaps the input BPEL and relevant WSDL
files to complete OWL-S suite of ontologies i.eofite, Process Model and Grounding.

<definition.....
<messages>
</message>
<portType> .
</portType>

<service>

-~
: H Service
</service> .

e

0

‘e
.

</definition> Profile

BPEL4WS

Service
Service) M odel

<process.....
<variables>

</variables> BPEL 4WS20WL-S Service
<partners>

</partners> Mapplng TOOlS . GI’OUndIng
<sequence> E

</sequence> s

</process> SRS

WSDL Fig.18. Mapping of BPEL4WS process to OWL-Sesoitontologies.

41 Profile

On the basis of the input and output created fer@WL-S Composite Process (discussed in data flow

section), the service profile is created for inpamsl outputs of the OWL-S service e.g. the codevbel
shows the profile for the “TranslationAndDictionaexample.

<profile:Profile rdf:about="http://www.BPEL2OWLS. org/ChangeTestURI.owl#TestProfile">
<profile:hasinput
rdf:resource="http://www.BPEL20OWLS.org/ChangeT estURI.owl#inputStr'/>
<profile:hasInput
rdf:resource="http://www.BPEL20OWLS.org/ChangeT estURI.owl#inputLang"/>
<profile:hasinput
rdf:resource="http://www.BPEL20WLS.org/ChangeT estURI.owl#outputLang"/>
<profile:hasOutput
rdf:resource="http://www.BPEL20WLS.org/ChangeT estURI.owl#return"/>
<profile:textDescription>This Profile is create d by BPEL2OWLS Tool

</profile:textDescription>
<rdfs:label>BPEL20OWLS Profile</rdfs:label>
<service:presentedBy

rdf:resource="http://www.BPEL20WLS.org/ChangeT estURI.owl#TestService"/>
</profile:Profile>

Fig.19. Service Profile for “TranslationAndDictiong process example.

4.2 Process Mode

In section 3 we have discussed in detail aboutifigsion for mapping from BPEL process model to
OWL-S process model. OWL-S process model is conbimaf these BPEL mapped activities in OWL-S
Composite and Atomic Processes with relevant dtata f

4.3 Grounding

“Grounding” of a service specifies details aboutvhto access a service. In case of our mapped OWL-S
service, “Grounding” of OWL-S service specifies theation of the grounding of each Atomic Processs (
shown in fig. 20). Also concrete messages are fpeaxplicitly in grounding. Off course mappingrist

able to define the xsltTransformation [16] for cdexpmessages. Web Services Description Language
(WSDL) service, being XML format for describing wetrk services is referred in grounding of each
Atomic Process to have access to the original impigation of WSDL service.

<grounding:WsdIGrounding

rdf:about="http://www.BPEL2OWLS.org/ChangeTestU Rl.owl#TestGrounding">
<service:supportedBy

rdf:resource="http://www.BPEL20OWLS.org/ChangeT estURI.owl#TestService"/>
<grounding:hasAtomicProcessGrounding

rdf:resource="http://examples.org/DummyURI/get Meaning.owl#

getMeaningAtomicProcessGrounding'/>
<grounding:hasAtomicProcessGrounding
rdf:resource="http://examples.org/DummyURI/get Translation.owl#
getTranslationAtomicProcessGrounding"/>

</grounding:WsdIGrounding>

Fig.20. Service Grounding for “TranslationAndDiatiary” example.

In figure 20 “getMeaningAtomicProcessGrounding” dgdtTranslationAtomicProcessGrounding” are
groundings for “getMeaningProcess” and ‘“getTraist@rocess” defined in “getMeaning.owl” and
“getTranslation.owl” created in section 3.2.1.

5 Prototype of Mapping Tool

The tool provides very easy to use environmentaddnput for mapping, tool requires an input BPHg f
and relevant WSDL files. Where as WSDL files arghfer divided in toMaster and SlaveWSDL files.
Master WSDL file refers to BPEL corresponding WSIile containing information about partner links
and messages exchanged between interacting pafivedysservices) etc. and slave WSDL files corregpon
to WSDL web services interacting with business pssc

: BPELA4WS 2 DWL-S v1.1 — o<
Elle Project Icols Heln

== i Lo | 2= |ar | ™

=i+ = Proect Fxpiarar

bpel

O="httn HLangTranslationPriin

—Massa e To Transialion Semice: hars! NpUISHING! GusH=""1ocakname 0= 'string’ and namsspace-uro="htt T 5 owa-s Process ontoloo
ol TS ¥ (25 OWIL-S Sulte OF Omologies

o rmins="hitn Ao dule3 LTIS" /=

arable="mMessagel_| o_lranslalon_Serice’ pan="inpuiLanguage” f=
=

o bl "1 1Tl rt="part" gl 1- O="Root’ o O="httr L T 1ati Pri.l ? -S AtomicProcesses
mvaniable="ine Ut Mes saue” part="part quen="rlocal name0="Root' and namespace-uri b HLanoTransiationPr.in ==
oS AL angTllacal NaTne Ominputlang: Gnd narmooepacs uriom T i ¥ e rransiaisn i
e ari A e T S SRga T 1 o FATSIANon, Senee: P are B ILaNG UagE" qUen=""lI0ca -name="StnG’ and Names pacs-un o) [gewtmacaning. o
R MRS 2L TS 17 £

<l v = e s sE e T Translalion_Servive’ par="oulpullanguage” 1=
feopy=

oy
Ziromm variaple=nput_ Message: par=part quen="rocal-namey=toot and namespace-ung="ntiLang | ransiationt.in
Shmmifbonss i@l it ontad e e

Messagel To O T T e ey P B s e S P S B

Por_1" podType="a3:T ype" of =G tTT " inputaris
" outputsariable—Messagsl_From_Translation_Service” -

LTI (1T

Fig.21. An overview of prototype mapping tool.

As a first step, tool requires to create a newqmtoand adding the input BPEL and master and slave
WSDL files in the project. Then we validate the jpob for input BPEL and WSLD files. This validation
results in validation message for input files oroermessage, telling that one of the input filemdg
validated. If project validation is successful thea build the project. Building of project parseBH. file
and each WSDL file to create object view of coroegping files, to use in mapping. After successfully
building the project, it is mapped to OWL-S, resmgt in creation of “Atomic Processes” for each
supported operation and OWL-S suite of ontolodiBsrvice Profile” specifies the semantically engdh
information (enriched with dummy URIs that need ie changed with original ontological concepts
according requirement) about inputs and outputthef OWL-S service. “Process Model” controls the
interaction with services and “Grounding” of OWLs8rvice describes how to access the mapped OWL-S
service.

Tool presents user friendly and easy to use irterfRight upper window acts as a “Project Explorer”
to explore project files (BPEL, WSDL and OWL file§ight lower window is “Object Explorer” which
gives object view of BPEL, WSDL and data flow OWled. Object view for OWL-S suite of ontologies is
not supported in this version. But contents of ehéiles can be seen in upper left window by double
clicking the file in “Project Explorer”. While thieft lower window is output window, which gives put
messages of different actions, performed e.g. atitid, building and mapping.

6 Reated Work and Future Plan

Since OWL-S is not as much mature as BPEL e.g.vabaiit of BPEL activities likeAssignmentFault
Handler, terminateetc are not available in OWL-S for direct mappframm BPEL to OWL-S. Issues like
“process:produce” Control Construct (used to crdata flow) are under discussion on W3C. Infororati
about pre and post-conditions is not available REB (so that it can be used in mapping) and semanti
information needed for mapping inputs and outpatsritological concepts need to be manually changed
with real ontological concepts in resulting OWL-8talogy. Therefore in these areas where mapping is
partially supported or needs information to be adtély the user, manually changing is also a time
consuming and complex task and requires a useret@rb expert of OWL-S. So at this stage our
BPELAWS20WL-S tool needs constant updates withufioming versions of the related technologies.
Secondly a tool is needed that can be used to afevetjuired ontologies and an editor which can frelp
editing resulting OWL-S ontology with these ontdtay concepts more easily and ideally in a visual
environment.

“Protégé” with its plug-in “OWL-S Editor” is an iéé environment that can be used to move forward.
“Protégé” is an ontology development tool and “OWLEditor” is an editor that can be used to visually
develop and edit OWL-S ontologies. “OWL-S Editos”dvailable as a plug-in for “Protégé”. So as & nex
step to our work we are planning to produce moresistent mapping from BPEL to OWL-S. Especially
we shall try to implement support for synchronizatbetween process components and to fully sugpert
“Conditions”. We shall try to make our tool fullpmpatible with “Protégé” and “OWL-S Editor”. We are
also working to improve our tool as a BPELAWS20OWIir$ort plug-in for “Protégé” and “OWL-S
Editor”, so that mapped OWL-S services can be thr@oported in “OWL-S Editor” and can be edited (t
add real ontological concepts for inputs and owtuid for adding pre and post conditions etc.)\isaal
environment.

7 Conclusion

BPEL4AWS (BPEL) is being used by business procesdefimy community for modeling business
processes. But lack of semantics in BPEL keep usydmm business process automation. Where as
OWL-S provides with computer understandable semmrabout the capabilities of a service that can be
used to achieve the aim of process automation Ippmg BPEL processes to OWL-S ontology. Therefore
to overcome the semantic limitations of BPEL we éenavesented our work to map BPEL processes to
OWL-S ontology, to use the benefits of process Hiogleapabilities and semantic capabilities of OWL-
Our BPELAWS20WL-S mapping tool generates the OWAtBmic Process with its Profile, Process
Model and Grounding, for each supported opera#idso BPEL process is mapped to OWL-S ontology
(Profile, Process Model and Grounding) accordingtiove discussed mapping specifications.

After successful mapping, end user needs to chsagmntic information for inputs and outputs in the
service profile with some real ontological concepisresulting OWL-S service pre and post condgican
be added (if required) and data flow and conditiwkich are partially supported in this versionh dze
completed by editing resulting OWL-S service in sgoraditor e.g. OWL-S Editor. Once missing
information is added in resulting OWL-S service¢dn be used to execute with the OWL-S API (we are
talking about executing the OWL-S service with @&/L-S API because till now OWL-S API is only a
way to execute an OWL-S services). Also “Groundifiy” each OWL-S Atomic Process refers to real
WSDL service so that WSDL service can be accessed petwork and relevant operation can be
performed. Also in case of complex message typassneeds to define the XSLT transformation manually

Refer ences

1. WISEINFO: [online] Available http://wiseinfo.iofweb-service.htm

2. Business Process Execution Language for WebicgerWersion 1.1. 'S May 2003. [online]
Available ftp:/Mww6.software.ibm.com/software/déer/library/ws-bpel.pdf.

3. OWL-S: Semantic Markup for Web Services. [orline Available
http:/AMww.daml.org/services/owl-s/1.1/overview!.

4. Web Services Description Language (WSDL) 1.alifie] Available http://www.w3.org/TR/wsdl.

5. Daniel J. Mandell and Sheila A. Mcllraith: Adiygt BPELAWS for the Semantic Web: The
Bottom-Up Approach to Web Service InteroperationocBedings of the Second International
Semantic Web Conference 2003.

6. Jun Shen and Yun Yang: Experiences with Intedra&-Business Process Specifications (in
review for Journal).

7. Gerald C. Gannod, Raynette J. Brodie and JohHhTinm: An Interactive Approach for
Specifying OWL-S Groundings. Proceedings of the BEEDOC Enterprise Computing
Conference, Sept. 2005.

8. Evren Sirin: OWL-S API. [Project Home Page] Aable http://www.mindswap.org/2004/owl-
s/apil.

9. Jun Shen and Yun Yang: BPEL20WL-S1.1 [online] whad Page
http:/AMww.it.swin.edu.au/centres/cicec/bpel2ovtish

10. UDDI Version 3.0.2: UDDI Specifications Techali€ommittee Draft, Dated 20041019. [online]
Available http://ww.uddi.org/specification.html

11. Frank Leymann. Web Services Flow Language (WSH) May 2001. [online] Available
http:/AMww-306.ibm.com/software/solutions/webseegip df/WSFL.pdf.

12. Judith M. Myerson: Web Service Architecture.bfshed by Tect, USA. [online] Available
http://iwww.webservicesarchitect.com/content/arsitieebservicesarchitectures.pdf.

13. http:/lupnp.org/

14. A First Overview of BPELAWS. January 25, 2.005[online] Available
http://jroller.com/page/coreteam/Weblog?catname=9é@ikflow

15. Polar Lake, White Paper, Automating Businesscé&ss Management With BPEL and XML
[online] Available http://www.polarlake.com/en/atsge/hitepapers/AutomatingBusinessProcess
Management_ BPEL XML.pdf

16. XSL Transformations (XSLT) : [online] Availabltetp://imww.w3.org/TR/xslt.

17. OWL-S’ Relationship to Selected Other Technigleg [online] Available
http:/AMmww.daml.org/services/owl-s/1.1/related.html

